Morphometric assessment of the effects of monosodium glutamate on the carotid sinus wall: an experimental study

Keywords: monosodium glutamate, carotid sinus, internal carotid artery, intima, media, adventitia

Abstract

The increase in global burden of stroke is hard to overestimate. Every year it continues to be a leading cause of mortality worldwide. Extracranial pathology of the carotid arteries is a major underlying reason of stroke. Given the role of alimentary factors in the development of atherosclerosis of the carotid arteries, possible influence of food additives on the carotid sinus structure is of special interest. Monosodium glutamate is one of the most common food additives that is allowed for consumption in many countries due to it being considered relatively safe. Recent scientific research however points towards the possible adverse effects of monosodium glutamate on the living organism. The aim of this study was to analyze qualitative and quantitative parameters of carotid sinus structural organization of white male albino rats under normal conditions, in the setting of oral monosodium glutamate consumption and after its withdrawal. Carotid sinuses of 30 white male albino rats that had been daily consuming 10 mg/kg of monosodium glutamate for 4 or 8 weeks with subsequent withdrawal for 2 weeks were subjected to qualitative and quantitative analysis at different time-points of the experiment. The data obtained was compared with the results of morphologic and morphometric study of carotid sinuses of 9 rats of the control group. For morphometric analysis, the following parameters were considered: intima thickness, media thickness, adventitia thickness, diameters of the arterioles, venules and capillaries of the carotid sinus vasa vasorum. Summarizing the morphometric analysis results, it is worth noting that, for the duration of 8 weeks of the experiment, steady increase in the thickness of all layers of the vascular wall, but especially intima and adventitia, was observed in the study group. At the same time, the diameter of the arterioles located in the carotid sinus adventitia was decreasing, while venules and capillaries demonstrated invariable increase of their lumen diameter. After 2 weeks of monosodium glutamate withdrawal, the thickness of intima and adventitia continued to increase, while media thickness had somewhat decreased, probably due to fibrosis and dystrophy. The tendency towards narrowing of the arterioles’ lumen and widening of the venules and capillaries persisted for at least 2 weeks despite discontinuation of monosodium glutamate. Therefore, systematic consumption of monosodium glutamate may lead to impairment of carotid sinus structural organization, particularly endothelial proliferation, fibrotic and dystrophic changes of media, adventitia thickening as well as microcirculatory vessels damage, that continue to persist despite the food additive withdrawal.

Downloads

Download data is not yet available.

References

Abdou, H. M., Hassan, E. H., & Aly, R. G. (2020). Monosodium glutamate (MSG):promoter of neurotoxicity, testicular impairment, inflammation and apoptosis in male rats. Swed. J. BioSci. Res., 1(2), 78-90. doi: 10.51136/sjbsr.2020.78.90

Abo Zeid, A. A., Rowida Raafat, I., & Ahmed, A. G. (2022). Berberine alleviates monosodium glutamate induced postnatal metabolic disorders associated vascular endothelial dysfunction in newborn rats: possible role of matrix metalloproteinase-1. Archives of Physiology and Biochemistry, 128(3), 818-829. doi: 10.1080/13813455.2020.1729815

Aghajani, M., Imani, A., Faghihi, M., Mahdavi, M. R. V., Mahboubi, S., Moradi, F., & Moghaddam, E. K. (2017). Does increased nitric oxide production and oxidative stress due to high fat diet affect cardiac function after myocardial infarction? Journal of Cellular & Molecular Anesthesia, 2(1), 3-8. doi: 10.22037/JCMA.V2I1.14288

Airaodion, A. I., Ogbuagu, E. O., Osemwowa, E. U., Ogbuagu, U., Esonu, C. E., Agunbiade, A. P., ... & Oloruntoba, A. P. (2019). Toxicological effect of monosodium glutamate in seasonings on human health. Glob. J. Nutri. Food Sci., 1(5), 1-9. doi: 10.33552/GJNFS.2019.01.000522

Albrahim, T., & Binobead, M. A. (2018). Roles of Moringa oleifera leaf extract in improving the impact of high dietary intake of monosodium glutamate-induced liver toxicity, oxidative stress, genotoxicity, DNA damage, and PCNA alterations in male rats. Oxidative Medicine and Cellular Longevity, 2018, 4501097. doi: 10.1155/2018/4501097

Banerjee, A., Mukherjee, S., & Maji, B. K. (2021). Efficacy of Coccinia grandis against monosodium glutamate induced hepato-cardiac anomalies by inhibiting NF-kB and caspase 3 mediated signalling in rat model. Human & Experimental Toxicology, 40(11), 1825-1851. doi: 10.1177/09603271211010895

Banerjee, A., Mukherjee, S., & Maji, B. K. (2021). Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicology Reports, 8, 938-961. doi: 10.1016/j.toxrep.2021.04.009

Chakraborty, S. P. (2019). Patho-physiological and toxicological aspects of monosodium glutamate. Toxicology Mechanisms and Methods, 29(6), 389-396. doi: 10.1080/15376516.2018.1528649

Chen, W., Chen, Z., Xue, N., Zheng, Z., Li, S., & Wang, L. (2013). Effects of CB1 receptor blockade on monosodium glutamate induced hypometabolic and hypothalamic obesity in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 386(8), 721-732. doi: 10.1007/S00210-013-0875-Y

Coutinho, J. M., Derkatch, S., Potvin, A. R. J., Tomlinson, G., Casaubon, L. K., Silver, F. L., & Mandell, D. M. (2017). Carotid artery web and ischemic stroke: A case-control study. Neurology, 88(1), 65-69. doi: 10.1212/WNL.0000000000003464

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Dusemund, B., ... & Lambré, C. (2017). Re‐evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA Journal, 15(7), e04910. doi: 10.2903/j.efsa.2017.4910

El Malik, A., & Sabahelkhier, M. K. (2019). Changes in lipid profile and heart tissues of wistar rats induces by using monosodium glutamate as food additive. International of Journal Biochemistry and Physiology, 4(1), 141-147. doi: 10.23880/ijbp-16000147

Fuchsberger, T., Yuste, R., Martinez-Bellver, S., Blanco-Gandia, M. C., Torres-Cuevas, I., Blasco-Serra, A., ... & Vina, J. (2019). Oral monosodium glutamate administration causes early onset of Alzheimer’s disease-like pathophysiology in APP/PS1 Mice. Journal of Alzheimer’s Disease, 72(3), 957-975. doi: 10.3233/JAD-190274

Gwala, F. O., Olabu, B. O., Pulei, A. N., & Ogeng’o, J. A. (2019). Hibiscus extract mitigates salt induced carotid adventitial changes in rats. Anatomy Journal of Africa, 8(1), 1342-1350. doi: 10.4314/aja.v8i1.182598

Harapko, T., & Mateshuk-Vatseba, L. (2021). Effects of MSG on the lymph nodes of the albino rat: ultrastructural and morphometric studies. Eur. J. Anat., 25(1), 75-81.

Kolenchenko, O. O., Falaeeva, T. M., Beregova, T. V., & Kuryk, O. G. (2017). Структурно-функціональні зміни в стінці товстого кишечника за умов введення глутамату натрію [Structural and functional changes in the wall of the large intestine under the conditions of monosodium glutamate administration]. Український журнал медицини, біології та спорту – Ukrainian Journal of Medicine, Biology and Sports, 5, 39-43.

Kraal, A. Z., Arvanitis, N. R., Jaeger, A. P., & Ellingrod, V. L. (2020). Could Dietary Glutamate Play a Role in Psychiatric Distress? Neuropsychobiology, 79(1), 13-19. doi: 10.1159/000496294

Krawisz, A. K., Carroll, B. J., & Secemsky, E. A. (2021). Risk Stratification and Management of Extracranial Carotid Artery Disease. Cardiology Clinics, 39(4), 539-549. doi: 10.1016/j.ccl.2021.06.007

Kumar, P., Kraal, A. Z., Prawdzik, A. M., Ringold, A. E., & Ellingrod, V. (2021). Dietary Glutamic Acid, Obesity, and Depressive Symptoms in Patients with Schizophrenia. Front Psychiatry, 11, 620097. doi: 10.3389/fpsyt.2020.620097

Mondal, M., Sarkar, K., Nath, P. P., & Paul, G. (2018). Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. Environmental Toxicology, 33(2), 198-208. doi: 10.1002/tox.22508

Murphy, S. J., & Werring, D. J. (2020). Stroke: causes and clinical features. Medicine, 48(9), 561-566. doi: 10.1016/j.mpmed.2020.06.002

Nadraga, B. O., Strus, H. I., Yashchenko, A. M., & Lutsyk, O. D. (2020). Імуногістохімічні дослідження серцевого м’яза щура за умов експериментальної ішемії [Immunohistochemical studies of rat heart muscle under conditions of experimental ischemia]. Львівський медичний часопис – Acta Medica Leopoliensia, 26(1), 11-20. doi: 10.25040/aml2020.01.011

Pongking, T., Haonon, O., Dangtakot, R., Onsurathum, S., Jusakul, A., Intuyod, K., ... & Pinlaor, P. (2020). A combination of monosodium glutamate and high-fat and high-fructose diets increases the risk of kidney injury, gut dysbiosis and host-microbial co-metabolism. Plos one, 15(4), e0231237. doi: 10.1371/journal.pone.0231237

Theofilis, P., Sagris, M., Oikonomou, E., Antonopoulos, A. S., Siasos, G., Tsioufis, C., & Tousoulis, D. (2021). Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines, 9(7), 781. doi: 10.3390/biomedicines9070781

Thongsepee, N., Martviset, P., Chantree, P., Sornchuer, P., Sangpairoj, K., Prathaphan, P., ... & Hiranyachattada, S. (2022). Daily consumption of monosodium glutamate pronounced hypertension and altered renal excretory function in normotensive and hypertensive rats. Heliyon, 8(10), e10972. doi: 10.1016/j.heliyon.2022.e10972

Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., ... & American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. (2020). Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation, 141(9), e139-e596. doi: 10.1161/CIR.0000000000000757

Vlasiuk, T. I., & Zhurakivska, O. Ya. (2018). Prospects for the use of exenatide in the correction of experimental diabetic cardiomyopathies. The Pharma Innovation Journal, 7(9), 35-40.

Xu, S., Ilyas, I., Little, P. J., Li, H., Kamato, D., Zheng, X., ... & Weng, J. (2021). Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacological Reviews, 73(3), 924-967. doi: 10.1124/pharmrev.120.000096

Published
2023-03-21
How to Cite
Sodomora , O. (2023). Morphometric assessment of the effects of monosodium glutamate on the carotid sinus wall: an experimental study. Reports of Morphology, 29(1), 39-45. https://doi.org/10.31393/morphology-journal-2023-29(1)-06