Modeling of Valsalva sinuses and coronary artery ostia height parameters, depending on age-anthropometric indicators in healthy men based on computed tomography

Keywords: coronary artery ostia, anatomy, computed tomography, aorta

Abstract

Computed tomography is the “gold standard” for performing aortic morphometry during preoperative planning in invasive cardiology and cardiac surgery. Predictive modeling of indicators can significantly save resources. The purpose of the study: to make modelling of Valsalva sinuses and coronary artery ostia height parameters depending on age-anthropometric indicators in healthy men based on computed tomography. The material is represented by contrast-enhanced computed tomography images of the aorta and coronary arteries of forty-three men under normal conditions. Methods: morphometric and statistical analyses. A multifactorial correlation-regression analysis was conducted to establish the complex influence of age-anthropometric parameters on sinuses of Valsalva and coronary artery ostia height. The reliability of the obtained indicators was confirmed by Fisher’s test (F). Using the Durbin-Watson autocorrelation criterion, the correctness of the built model was proved. In healthy men, weight (direct effect) and body mass index (inverse effect) significantly influenced the height of the lower edge of the right coronary artery ostia. The regression coefficient is R = +0.632, with p<0.001, the standard error of estimation (SEE) is 2.951. The obtained linear equation of the prognostic model: the level of the height of the departure of the lower edge of the right coronary artery ostia = 0.359×А1 – 1.099×А2 + 16.53. The correctness of the built model was checked using the Durbin–Watson autocorrelation test (2.181). The prognostic model for calculating the height of the left aortic sinus was formed by height and weight indicators (strong direct influence): R = +0.759, p<0.001, SEE = 2.208. The adjusted coefficient of multiple determination was R2adj = +0.562. The Durbin-Watson autocorrelation criterion was within the normal range (2.241). The linear equation of the prognostic model with the obtained β-coefficients: the level of the height of the left sinus of the aorta = 35.83 × А1 + 0.033 × А2 – 42.22. The work of prognostic models for individuals with different anthropometric and age parameters was verified. Thus, a model of the dependence of the indicator of the height of the left sinus of the aorta on height and weight was created; of the height of the deviation of the lower edge of the right coronary artery from weight and body mass index in healthy men based on computed tomography.

Downloads

Download data is not yet available.

References

Baumgartner, H., Falk, V., Bax, J. J., De Bonis, M., Hamm, C., Holm, P. J., ... & Zamorano, J. L. (2017). 2017 ESC/EACTS Guidelines for the management of valvular heart disease. European Heart Journal, 38(36), 2739-2791. doi: 10.1093/ejcts/ezx324

Erbel, R., Aboyans, V., Boileau, C., Bossone, E., Di Bartolomeo, R., Eggebrecht, H., ... & Vrints, C. J. (2014). 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J., 35(41), 2873-2926. doi: 10.1093/eurheartj/ehu281

Francone, M., Budde, R. P., Bremerich, J., Dacher, J. N., Loewe, C., Wolf, F., ... & Salgado, R. (2020). CT and MR imaging prior to transcatheter aortic valve implantation: standardisation of scanning protocols, measurements and reporting – a consensus document by the European Society of Cardiovascular Radiology (ESCR). European radiology, 30, 2627-2650. doi: 10.1007/s00330-019-06357-8

Gunas, V. I., Kotsyura, O. O., Babych, L. V., Shevchuk, Y. G., & Cherkasova, O. V. (2020). Features correlations of the sizes of molars with cephalometric indicators of men of the western region of Ukraine. Reports of Morphology, 26(2), 51-61. doi: 10.31393/morphology-journal-2020-26(2)-08

Ho, S. Y. (2009). Structure and anatomy of the aortic root. European Journal of Echocardiography, 10(1), i3-i10. doi: 10.1093/ejechocard/jen243

Kim, J. (2016). Personality traits and body weight: Evidence using sibling comparisons. Social Science & Medicine, 163, 54-62. doi: 10.1016/j.socscimed.2016.06.054

Leong, K. E., Knipe, H., Binny, S., Pascoe, H., Better, N., Langenberg, F., ... & Joshi, S. B. (2021). Aortic root measurement on CT: Linear dimensions, aortic root area and comparison with echocardiography. A retrospective cross sectional study. The British Journal of Radiology, 94(1121), 20201232. doi: 10.1259/bjr.20201232

Marano, R., Pontone, G., Agricola, E., Alushi, B., Bartorelli, A., Cameli, M., ... & Centonze, M. (2022). Recommendations in pre-procedural imaging assessment for TAVI intervention: SIC-SIRM position paper part 2 (CT and MR angiography, standard medical reporting, future perspectives). La Radiologia Medica, 127(3), 277-293. doi: 10.1007/s11547-021-01434-9

Nagpal, P., Agrawal, M. D., Saboo, S. S., Hedgire, S., Priya, S., & Steigner, M. L. (2020). Imaging of the aortic root on high-pitch non-gated and ECG-gated CT: awareness is the key! Insights into Imaging, 11(1), 1-14. doi: 10.1186/s13244-020-00855-w

Otto, C. M., Nishimura, R. A., Bonow, R. O., Carabello, B. A., Erwin III, J. P., Gentile, F., … & Toly, C. (2021). 2020 ACC/AHA Guideline for the Management of Patients/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 143(5), e72-е227. doi: 10.1161/CIR.0000000000000923

Pidvalna, U. Ye., Beshley, D. M., & Mateshuk-Vatseba, L. R. (2021). Морфометрія відходження вінцевих артерій у чоловіків в нормі [Morphometry of the origin of the coronary arteries in men within the physiological norm]. Морфологія – Morphology, 15(4), 76-80. doi: 10.26641/1997-9665.2021.4.76-80

Pidvalna, U., Lonchyna, V. A., Beshley, D., & Mateshuk-Vatseba, L. (2022). The height of the sinuses of Valsalva depending on anthropometric data among Ukrainian population. European Journal of Anatomy, 26(5), 487-494. doi: 10.52083/IYMG4367

Plonek, T., Berezowski, M., Bochenek, M., Filip, G., Rylski, B., Golesworthy, T., & Jasinski, M. (2019). A comparison of aortic root measurements by echocardiography and computed tomography. The Journal of Thoracic and Cardiovascular Surgery, 157(2), 479-486. doi: 10.1016/j.jtcvs.2018.07.053

Pontone, G., Di Cesare, E., Castelletti, S., De Cobelli, F., De Lazzari, M., Esposito, A., ... & Francone, M. (2021). Appropriate use criteria for cardiovascular magnetic resonance imaging (CMR): SIC-SIRM position paper part 1 (ischemic and congenital heart diseases, cardio-oncology, cardiac masses and heart transplant). La radiologia medica, 126, 365-379. doi: 10.1007/s11547-020-01332-6

Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., ... & GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. (2020). Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. Journal of the American College of Cardiology, 76(25), 2982-3021. doi: 10.1016/j.jacc.2020.11.010

Seigerman, M. E., Nathan, A., & Anwaruddin, S. (2019). The lotus valve system: an in-depth review of the technology. Current Cardiology Reports, 21, 1-9. doi: 10.1007/s11886-019-1234-5

Soboń, J. S., Cherkasova, O. V., Gunas, V. I., Babych, L. V., & Kotsyura, O. O. (2020). Correlations of linear sizes of molars with cephalometric indicators of practically healthy men of the southern region of Ukraine. Biomedical and Biosocial Anthropology, (38), 36-46. doi: 10.31393/bba38-2020-06

Visseren, F. L., Mach, F., Smulders, Y. M., Carballo, D., Koskinas, K. C., Bäck, M., ... & Williams, B. (2021). 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). European Heart Journal, 42(34), 3227-3337. doi: 10.1093/eurheartj/ehab484

Vos, T., Lim, S. S., Abbafati, C., Abbas, K. M., Abbasi, M., Abbasifard, M., ... & Bhutta, Z. A. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1204-1222. doi: 10.1016/S0140-6736(20)30925-9

Wang, X., Ren, X. S., An, Y. Q., Hou, Z. H., Yu, Y. T., Lu, B., & Wang, F. (2021). A Specific Assessment of the Normal Anatomy of the Aortic Root in Relation to Age and Gender. International Journal of General Medicine, 2827-2837. doi: 10.2147/IJGM.S312439

Wolff, R., Radhakrishnan, S., Mitsuhashi, H., Zavodni, A., Roifman, I., Sparkes, J. D., ... & Strauss, B. H. (2016). CoreValve prosthesis depth: what is the optimal measurement target?. The Journal of Heart Valve Disease, 25(4), 417-423. PMID: 28009943

Published
2023-03-21
How to Cite
Pidvalna , U. Y. (2023). Modeling of Valsalva sinuses and coronary artery ostia height parameters, depending on age-anthropometric indicators in healthy men based on computed tomography. Reports of Morphology, 29(1), 9-14. https://doi.org/10.31393/morphology-journal-2023-29(1)-02